DO PROBLEMS IN YOUR NOTEBOOK

Date

Part 1: Change Forms

Write each equation in <i>exponential</i> form. (NO Calculator)				
1. $\log_2 64 = 6$	2. $\log_4 \frac{1}{64} = -3$	3. $\log_{10}(0.01) = -2$	4. $\log_5 125 = 3$	
Write each equation in <u>logarithmic</u> form. (NO Calculator)				

5. $2^5 = 32$ 6. $5^{-1/2} = \frac{\sqrt{5}}{5}$ 7. $10^{-1} = 0.1$ 8. $3^3 = 27$

Part 2: Mental Math Evaluate the expression. Answer can be in terms of e. <u>Hint for 1-12—set = x and solve for x.</u> (NO Calculator)

1. $\log_2 8$	2. $\log_8 64$	3. $\log_6 216$	4. log ₇ 7
5. log ₆ 1	6. $\log_8 \frac{1}{8}$	7. $\log_7 \frac{1}{49}$	8. $\log_9 \frac{1}{27}$
9. $\log_5 \sqrt{5}$	10. log ₉ 3	11. $\log_2 \sqrt[3]{2}$	12. log _{1/2} 16
13. $\ln e^{(x+2)} = 5$	14. $\ln e^{3x} = 21$	15. $e^{\ln(x-3)} = 9$	16. $e^{\ln(x+7)} = 19$

Use a <u>calculator</u> to evaluate each expression. <u>Plug it in and round to three decimal places</u>. (Calculator)

17. e^3 18. $5e^{\overline{4}}$ 19. ln 1.6 20. $4\ln 6 + 7$ 21. $5\ln 7 - \ln 8$

<u>Part 3: Expand</u> the expression using the properties of logs. The words log/ln will be used <u>repeatedly</u> in each problem. (NO Calculator)

1. $\log_6 3x$	$2. \log_2 \frac{x}{5}$	3. $\log_{10} xy^2$
4. $\log_4 \frac{xy}{3}$	5. $\log_5 2\sqrt{X}$	6. $\log_m \frac{a}{yw}$
7. ln $x^{1/2}yz$	8. $\ln 5x^3$	9. $\ln\left(\frac{x}{y}\right)$

~

Part 4: Condense the expression using the properties of logs. The word log/ln will be used once in each problem. (NO Calculator)

 1. $\log_3 8 - \log_3 2$ 2. $2 \log_5 4 + \log_5 3$ 3. $\log_4 5 + \log_4 3 + \log_4 1$

 4. $\frac{1}{2} \log_{10} 24 - \log_{10} 4$ 5. $\frac{2}{3} \log_2 x - 3 \log_2 y$ 6. $\log_3 4 + 2 \log_3 x - \log_3 5$

 7. $\frac{1}{2} \log_2 x - 2 \log_s y$ 8. $3\log_a 2 + \frac{1}{3}\log_a 27 - \frac{1}{2}\log_a 16$ 9. $\ln x + \ln 5$

10. $\ln 4 - \ln y$

11. $4 \ln x + 5 \ln y$

12. $\ln 6 - (\ln x + \ln 3)$ 13. $\ln 4 + 3 \ln x + \frac{1}{2} \ln y$

Part 5: Solve for x. (NO Calculator)

1. $\log_6 x = 2$ 2. $\log_5 x = 3$ 3. $\log_{16} x = \frac{1}{2}$ 4. $\log_9 x = \frac{3}{2}$ 5. $\log_2 x = -1$ 6. $\log_7 x = 3$ 7. $\log_4 4^{(x+2)} = 5$ 8. $\log_3 x = 4$

Period

Part 6: Solve for x. Round to 3 decimal places if necessary. Be sure to get the exponent by itself! (Calculator)

1. $\log_3 5 = x$	2. $\log_{6} 50 = x$	3. $\log_{3} 15 = x$	4. $10^{x} = 200$
5. $7^{x} = 300$	6. $5^{x-6} = 100$	7. $16 - 4^x = 10$	8. $5^{x} = 12$
9. $5^{x+2} = 500$	10. $2^{x} = 1,000,000$	11. $\frac{4^{\times}}{2} = 20$	12. $5(1.5)^{x} = 3000$
13. $8^{x-4} = 75$	14. $48 - 2^x = 40$	15. $6(1.2)^{x} = 18$	16. 27 ^{2x-1} = 3
18. 8 ^{x+2} =2	19. $4^{1-x} = 8$	20. 3 [×] = 27	21. 4 ^x = 8 ⁵

Part 7: Condense & Solve Condense the each side of the equation, **then** solve for x. If there is a log with the same base on both sides then they cancel. (**NO Calculator**)

1. $\log_5 x = 3 \log_5 2$	2. $\log_4 x = \log_4 15 - \log_4 3$
3. $\log_a x = 2\log_a 3 + \log_a 5$	4. $\log_a x = \frac{3}{2} \log_a 9 + \log_a 2$
5. $\log_b(x+3) = \log_b 8 - \log_b 2$	6. $\log_b(x^2+7) = \frac{2}{3}\log_b 64$
7. $\log_x 100 - \log_x 4 = 2$	8. $\log_x 12 + \log_x 3 = 2$
9. $\log x - \log(x+3) = \log 1 - \log 10$	10. $\log(x+9) - \log x = \log 10$
11. $2 \log_4 3 = \log_4 x$ 13. $\log_3 5 - \log_3 x = \log_3 2$ 15. $\frac{1}{3} \log_{10} x = \log_{10} 3$	12. $\log_{10} x + \log_{10} 3 = \log_{10} 12$ 14. $\frac{1}{2} \log_3 16 = \log_3 x$ 16. $3 \log_5 2 + \log_5 x = \log_5 24$
17. $\ln x = 2 \ln 3$	18. $\ln x = 2 \ln 3 + \ln 7$
19. $\ln(x+3) = \ln 20 - \ln 2$	20. $\ln(x^2+7) = \frac{2}{3}\ln 64$

<u>Part 8: u-substitution</u> Factor the following and solve. (Round answers to three decimal places) 21) $e^{2x} - 4e^x - 4 = 0$ 22) $e^{2x} - 5e^x + 6 = 0$ 23) $e^{2x} - 3e^x - 4 = 0$

Part 9: Applications Write the equation and solve each problem. (Calculator)

1. The population of bacteria can be represented by the formula $N = N_0 e^{kt}$, where N_0 is the initial number of bacteria in the culture. N is the number after t hours, and k is a constant determined by the type of bacteria and the conditions. When will a culture of 300 bacteria, where k = 0.068, reach a count of 10,000?

2. A college math class consists of 32 students. On Monday at 9 AM, the teacher tells one student to notify the others that the test scheduled for Wednesday at 9 AM has been cancelled. The model for the number of students in the class who have heard this information after t hours is $N = 32 - 32e^{-0.02t}$. After how many hours will half of the class have been notified?

3. The power of supply of a satellite decreases exponentially over the time it is being used. The equation for determining the power $-\frac{t}{t}$

supply P, in watts, after t days is $P = 50e^{-\frac{L}{250}}$. Determine the <u>number of days</u> it will take for the power supply to be less than 30W.

4. A fossil contains 47 mg of carbon-14. Using the carbon-14 formula, A = AQ) $\frac{t}{5570}$, determine the <u>age</u> of the fossil if it originally contained 93 mg of carbon-14.

5. Mr. Campbell invested \$6500 in an account paying 6.5% interest compounded continuously. <u>How long</u> to the nearest year will it take the money in the account to increase by \$1500? $A = Pe^{rt}$

6. \$500 is invested at 6% annual interest, compounded quarterly. When will the balance double? $A = P\left(1 + \frac{r}{n}\right)^{n}$

7. 2000 is invested at 7% annual interest, compounded monthly. When will the balance triple? $A = P\left(1 + \frac{r}{n}\right)^m$

8. A population of 450 animals decreases at an annual rate of 16% per year. How long before there are only 100 animals left?